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Cellulose synthase-interactive protein 1 (CSI1) was identified in
a two-hybrid screen for proteins that interact with cellulose
synthase (CESA) isoforms involved in primary plant cell wall
synthesis. CSI1 encodes a 2,150-amino acid protein that contains
10 predicted Armadillo repeats and a C2 domain. Mutations in CS/1
cause defective cell elongation in hypocotyls and roots and reduce
cellulose content. CSI1 is associated with CESA complexes, and csi1
mutants affect the distribution and movement of CESA complexes
in the plasma membrane.
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Cellulose is synthesized at the plasma membrane by hexameric
protein complexes with a diameter of 25-30 nm when ob-
served by freeze-fracture electron microscopy in algae, moss, and
vascular plants (1-4). The only known component of the com-
plexes is cellulose synthase (CESA), which is represented by 10
isoforms in Arabidopsis (5). Genetic studies indicate at least three
Arabidopsis CESA isoforms are required for primary cell wall
synthesis (6, 7). Lesions in CESA1l (rswI), CESA3 (cevl), or
CESAG (prcl) lead to a deficiency in elongation in dark-grown
seedlings (8-10). Genetic and biochemical studies demonstrating
interactions between CESAs led to a heteromeric model of cel-
lulose synthesis (11, 12) in which the complexes are composed of
at least three functionally nonredundant CESA isoforms. It gen-
erally is accepted that in Arabidopsis CESA1, CESA3, and CESA6
or CESAG6-like proteins are required for functional primary cell
wall complexes, whereas CESA4, CESA7, and CESAS are re-
quired for functional secondary cell wall complexes. However, the
exact number of CESA proteins contained within the complex,
their stoichiometry, and their specific interactions are unknown,
and no other components of the complex have been reported.

Recent advances in cell biology and microscopy allow imaging
of CESA complexes in live tissues. At least two of the three pri-
mary CESAs (CESA3 and CESAG6) are functional when labeled
with GFP and its derivatives. Both GFP-CESA3 and YFP-CESA6
were observed at the plasma membrane as discreet particles that
move along linear trajectories coincident with underlying cortical
microtubules (7, 13). CESA particles move bidirectionally with an
average velocity of about 350 nm/min corresponding to the addi-
tion of ~700 glucose residues per glucan chain per minute (13).
CESA particle dynamics are sensitive to osmotic stress and to
several drugs that affect cytoskeleton and cellulose synthesis. The
observation that perturbation of microtubule polymerization by
oryzalin affects the overall distribution and motility of CESA
particles supports models in which the microtubules guide the
deposition of cellulose. However, CESA particles appear to have
an intrinsic level of organization that is evident when microtubules
are completely depleted (13).

Genetic screens for mutants deficient in cellulose have impli-
cated a number of proteins in the overall process of cellulose
biosynthesis. Mutations in KORRIGAN (KOR), which encodes an
endo-B-1,4-glucanase, exhibit deficiencies in cell elongation and
reduced cellulose production (14). KOR-like proteins from
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Brassica napus and poplar exhibit cellulase activity in vitro. How-
ever, the exact role of cellulase in cellulose synthesis is unknown.
Additional cellulose-deficient mutants include cobra, kobito,
poml, rsw3, fragile fiberl, and fragile fiber2, none of which has been
assigned a clear mechanistic function in cellulose synthesis. Here
we report the identification of a protein involved in cellulose
synthesis that appears to be associated with primary CESA com-
plexes. Identification of this protein opens an avenue in ongoing
efforts to understand the mechanism of cellulose synthesis.

Results

Cellulose Synthase-Interactive Protein 1 Interacts with Multiple
Primary CESAs. To explore whether additional proteins may be
required for cellulose biosynthesis, we performed yeast two-hy-
brid screens to identify proteins that physically interact with
CESAL, -3, and -6. Using 541 amino acids of the putative cata-
lytic domain of CESAG as bait, we identified a protein referred to
as “cellulose synthase-interactive protein 1”7 (CSI1; At2g22125)
(Fig. 14). To confirm the interaction of CESA6 and CSI1, we
subcloned the prey into a GALA4 activation domain (GAL4-AD)
and fused the putative catalytic domain of CESA6 with GAL4
binding domain (GAL4-BD). Coexpression of these constructs in
yeast resulted in the appearance of p-galactosidase (GUS) ac-
tivity, confirming the interaction between CESA6 and CSII.
CESAL1 and CESA3 also showed positive interactions with CSI1,
although the CESA3 interaction appeared to be weaker than the
CESAL1 or CESAG interaction (Fig. 1B).

CSI1 was identified previously as one of the genes that is
coregulated transcriptionally with the primary CESAs (15). In
addition to CSII, several genes that affect cellulose deposition,
including COBRA and CTLI1/POM]I, also are coexpressed with
the CESA genes (Fig. 1C). Consistent with coexpression analysis,
transgenic plants in which GUS was placed under the control of
the 1.4-kb promoter region upstream of the CSI1 gene exhibited
a pattern of GUS activity (Fig. 1 D, F, and H and Fig. S1) similar
to that seen with promoter:GUS fusions of primary wall CESA
genes (Fig. 1 E, G, and ]). In addition, the CSII promoter drives
GUS expression in floral tissues, rosette leaves, roots, and pollen
(Fig. S1), indicating that the CSI1 expression pattern is similar to
that of CESAs throughout development.
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Fig. 1. Identification of CSI1. (A) Schematic representation of CESA and CSI1 proteins. White bars represent predicted transmembrane domains and ARM

repeats in CESA and CSI1, respectively. The regions of the proteins used for the two-hybrid interaction tests are shown as arrows below the bars representing
the proteins. (B) CSI1 interacts with three primary CESA proteins in yeast. CSI1 fused with GAL4-AD specifically interacted with the central catalytic domain of
three primary CESAs fused with GAL4-BD. (C) Truncated coexpression network for primary wall cellulose-related genes using the AraGenNet at http://aranet.
mpimp-golm.mpg.de/aranet/AraGenNet (29). Colored lines indicate strength of transcriptional coordination: green, mutual rank <10; orange, mutual rank <20;
red, mutual rank <30. Connections of moderate interest for the study are shown in gray. Low mutual rank indicates stronger coexpression relationships. (D-/)
Promoter GUS analysis of CS/1::GUS (D, F, and H) and CESA3::GUS (E, G, and /). GUS staining pattern is shown in light-grown seedlings (D and E) and etiolated

seedlings (F-/). Red arrows indicate strong GUS activity. (Scale bars: 750 pm in D and E and 200 pm in F-I.)

CSI1 Encodes an Armadillo Repeat-Containing Protein. Protein se-
quence homology searches identified CSI/-related sequences in
a variety of dicots, monocots, and the moss Physomitrella patens
(Fig. S2). The Arabidopsis genome contains two closely related
genes, which we refer to as “CSI2” and “CSI3” and which share
about 55% sequence similarity with CSI1. No CSI1-like proteins
were identified outside the land plants. The CSI protein contains
multiple tandem copies of a degenerate protein sequence motif,
the armadillo (ARM) repeat. The ARM repeat is an ~#40-aa long,
tandemly repeated sequence first identified in the Drosophila
segment polarity gene, armadillo (16). ARM repeats are found in
more than 240 proteins which are predicted to share a conserved
3D structure and often participate in protein—protein interactions
(17-19). CSI1 also contains a C2 domain at its C terminus. Some
C2 domains have been shown to bind phospholipids in a calcium-
dependent or -independent manner and are involved in targeting
proteins to cell membranes (20, 21). Other C2 domains have been
shown to mediate protein—protein interactions (22).

¢si1 Mutants Have Defects in Expansion. To investigate the bi-
ological function of CSI1, we analyzed six independent homo-
zygous transfer DNA (T-DNA) insertion lines with insertions in
either exons or introns of CSI!/ from the Salk Institute Genomic
Analysis Laboratory (SIGnAL) collection (Fig. 24) (23). At least
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five of the lines probably were null alleles for CSI1, because no
CSII mRNA was detectable by RT-PCR (Fig. S34). Hypocotyls
in etiolated csi/ mutants were ~30% shorter and ~80% wider than
in wild-type plants (Fig. 2 B, C, and E) and elongated less rapidly
than in wild-type but more quickly than in prcl-1 (a CESA6
mutant) plants (Fig. 2D). The reduced hypocotyl length and in-
creased diameter indicate that csi/ mutants have defects in the
control of anisotropic expansion (highlighted cells in Fig. 2E). The
etiolated seedlings of csil alleles had a 50% reduction in crystal-
line cellulose (Fig. 2F). Several cellulose-deficient mutants, such
as cob-6, ctlljpom1, and korl, display similar cell elongation phe-
notypes (14, 24, 25).

csil mutants also exhibited short, and swollen, seedling roots.
In 8-d-old light-grown seedlings, roots in csi/ mutants were
~25% shorter than in wild-type plants (Fig. S3 B and C). The
roots in csil mutants also exhibited epidermal cell swelling and
were 80% wider than wild-type roots (Fig. S3 D-F). Additionally,
adult csi/ mutants were dwarfed and had shorter siliques than
wild-type plants (Fig. S3G). To test whether the smaller siliques
were caused by partial sterility, we conducted reciprocal back-
crosses to wild-type plants using heterozygous plants. The
progeny of these crosses clearly showed that the transmission of
the csil allele occurred at much lower frequency from the male
gametophytes than from the female, indicating that the reduced
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Fig. 2. CSI1 is required for normal cell expansion. (A) Schematic represen-
tation of six T-DNA insertion sites in csi1. Exons are represented by black
lines, and introns are shown by breaks. (B) Morphology of 4-d-old dark-
grown seedlings: (Left to Right) Col-0 (wild-type) and csi1-1, csi1-2, csil-3,
csi1-4, csi1-5, and csi1-6 mutants. (Scale bar: 2 mm.) (C and D) Hypocotyl
length (C) and growth rate (D) of dark-grown wild-type (Col-0) plants and
¢si1-3, ¢si1-6, and prci1-1 mutants. Data were collected from the measure-
ment of ~50 seedlings for each genotype. Error bars represent SE (absent
error bars were obscured by symbols). (E) SEM of dark-grown hypocotyls in
wild-type plants and c¢si7 mutants: (Left to Right) Arabidopsis thaliana Co-
lumbia (Col-0), csi1-3, and csiT-6 mutants. Colors outline one epidermal cell.
(Scale bar: 100 pM.) (F) Cellulose content was reduced in csi7 mutants. n = 5.
Error bars represent SE.

fertility of csil mutants was caused mainly by pollen defects
(Table S1). Therefore, we examined the surface structure of the
mature pollen grains by SEM. Although all wild-type pollen
grains displayed typical morphology, very few typical pollen
grains were observed in the csi/ alleles. Instead, the majority of
the csil pollen grains displayed irregular or collapsed cell wall
morphologies (Fig. S3 I and K). Similar observations also have
been reported for null alleles of CESAI and CESA3 (6).

CSI1 Is Associated with CESA Complexes. To investigate the sub-
cellular localization of CSI1, we generated both N- and C-terminal
translational fusions of red fluorescent protein (RFP) to the CSI1
protein under the native CSII promoter in the csil-6-mutant
background. Both N- and C-terminal constructs complemented the
mutant phenotypes of reduced hypocotyl elongation and reduced
expansion anisotropy, indicating that the fusion protein was func-
tional (Fig S4). Observation of epidermal cells in dark-grown hypo-
cotyls by spinning disk confocal microscopy revealed that RFP-
CSI1 was detected as distinct particles at the plasma membrane
(Fig. 34 and Movie S1). Similar to YFP-CESA6, RFP-CSI1 par-
ticles were organized into linear arrays. To assess whether RFP-
CSI1 particles move bidirectionally like those of YFP-CESAG®,
directional bias was analyzed by calculating the dot product of each
particle relative to the dominant axis of potential particle bias and
correlating this dot product with the velocity of each particle (Fig.
3E). Greater differences between particle velocities going with and
against the major axis result in a larger slope in a linear regression
of the plot. As seen in Fig. 3E, RFP-CSI1 particles (n = 917) travel
bidirectionally with no bias relative to the major axis. The average
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Fig. 3. CSI1 is localized to CESA-like particles in dark-grown hypocotyls
cells. (A-D) Optical sections of epidermal cells in 3-d-old dark-grown
hypocotyls expressing RFP-CSI1 (A and C) and YFP-CESA6 (B and D). Focal
planes of the plasma membrane (A and B) and lower cortex (C and D) are
shown. (Scale bar: 5 pm.) (E) Plot of RFP-CSI1 particle velocity vs. its dot
product (i.e., scalar product; see Methods) with the direction of bias. Red line
indicates the linear regression of the plot. A slope of 0 indicates no bias in
direction. (F) Histogram of measured RFP-CSI1 particle velocities. The mean is
416 nm/min (n = 917). (G-I) Localization of GFP-CESA3 (G), RFP-CSI1 (H), and
merge (/). (Scale bar: 5 pm.)

velocity of RFP-CSI1 particles in epidermal cells in dark-grown
hypocotyls was 416 nm/min (range 63-860 nm/min; Fig. 3F). The
velocity of RFP-CSI1 is similar to that reported for YFP-CESAG6
(13). Unlike YFP-CESAG®, which is associated with the Golgi com-
plex in addition to the plasma membrane (Fig. 3 B and D) (13),
RFP-CSI1 was not detected in the cytoplasmic compartments (Fig.
3C). In plants containing both GFP-CESA3 and RFP-CSI1, the
RFP-CSI1 particles were substantially colocalized with GFP-
CESA3 (Fig. 3 G-I).

Lesions in csi1 Affect the Distribution and Motility of YFP-CESA6. To
monitor the dynamics of CESA complexes in csi/ mutants directly,
we introduced a homozygous csil-3 allele into a YFP-CESAG line
(13). Using the YFP-CESA6 marker, CESA complexes can be
observed at the plasma membrane as distinct punctuate particles
that move at constant rates along linear tracks (13). Although the
CESA particles in the plasma membranes of wild-type (control)
epidermal cells were organized into linear arrays, the distribution
of the CESA particles appeared to be disorganized in plasma mem-
branes of the c¢sil-3 background (Fig. 4C and Movie S2). In con-
trast, CESA particles in the internal cell layers were not affected in
csil-3 mutants. We did not observe any significant differences in
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Fig. 4. YFP-CESA6 dynamics are altered in csi7-3 mutants. YFP-CESA6 lo-
calization in dark-grown hypocotyls cells is shown in wild-type plants (A and
B) and csi1-3 mutants (C and D). (A) A single optical section acquired at the
plane of plasma membrane in wild-type plants. (B) Average of 61 frames
(duration: 2 min; 2-s interval) showing movement of labeled particles along
linear trajectories. (C) Single optical section of YFP-CESA6 in csi7-3 mutant.
(D) Average of 61 frames (duration: 2 min; 2-s interval) in csi7-3 mutant.
(Scale bars: 5 pm.) (E) Histogram of measured particle velocities. The mean
velocity is 365 nm/min in control plants (n = 318) and 132 nm/min in csi1-3
mutants (n = 225).

the distribution or motility of CESA particles associated with the
Golgi complex in csil-3 mutants compared with control lines
(Golgi in the csil-3 mutants moved at 6021 + 405 nm/min vs.
5214 + 982 nm/min in wild-type plants). In control cells, CESA
particles associated with the plasma membrane migrated with an
average velocity of 365 + 45 nm/min (rn = 318). In csi/-3 mutants,
however, the average velocity of CESA particles was reduced to
132 + 52 nm/min (r = 225; Fig. 4E). These observations are re-
flected clearly in time-averaged projections of the CESA particles
(Fig. 4 B and D). In control cells, motile particles form linear
trajectories along the axes of the particle arrays. Although CESA
particles still move bidirectionally in csi/-3 mutants (as assessed
by Imaris software), linear tracks in time-averaged images were
much shorter.

Uniformity of Cellulose Microfibrils Is Affected in csif Mutants. To
investigate effects of the csi mutations on the arrangement of
cellulose microfibrils, we observed the longitudinal cell walls of
wild-type and csil-1 roots using circularly polarized light en-
hanced with the universal compensator (26). Polarized light can
be used to assay the abundance and orientation of cellulose mi-
crofibrils because of their partial crystallinity. Overall, the cell
walls appeared similar in both genotypes (Fig. 5 A and B). To
determine whether there was a quantitative difference in mi-
crofibril abundance or orientation, we quantified the retardance
of the cell walls and the azimuth of the crystalline elements. The
average retardance was about 1 nm, similar to that reported
previously for Arabidopsis cell walls (27), and there was no sig-
nificant difference between the genotypes in the three delineated
zones of the root (Fig. 5C). Similarly, in the three root zones of
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both genotypes, the azimuths averaged to 90° transverse to the
long axis of the root. However, for the elongation and mature
zones, the variability among azimuth measurements made in
individual roots was significantly greater in csi/-1 mutants than in
wild-type roots, suggesting that microfibril alignment in these cell
walls had become less uniform.

Discussion

The CSI1 protein is the first non-CESA protein associated with
CESA complexes. Several lines of evidence led us to hypothesize
that CSI1 exerts a direct effect on cellulose synthesis through its
association with CESA complexes. First, CSI1 physically interacts
with multiple primary CESAs in yeast two-hybrid assays, and CSI1
is transcriptionally coregulated with several of the CESA genes
involved in primary cell wall synthesis, but there was no obvious
association with CESAs involved in secondary cell wall synthesis.
Additionally, CSI1 colocalizes with primary CESA complexes,
and csil mutations affect the distribution and movement of CESA
complexes, resulting in strongly reduced rates of CESA complex
movement. If we assume that the length of cellulose microfibrils is
affected by the velocity and lifetimes of CESA particles, the cel-
lulose deficiency and the associated swelling phenotype can be
attributed to the effect of the csi/ mutations on the activity of
the CESA complexes. Additionally, the csil mutations appeared
to decrease the degree to which cellulose microfibrils are coal-
igned. Polarized light is sensitive to the azimuth at which the
optical axis of the crystalline sample is oriented. In both csil
mutants and wild-type roots the average azimuth of cellulose
microfibrils was transverse to the long axis of the root. However,
the SD of the azimuth measurements was larger in csi/ mutants
than in wild-type roots. In other words, microfibril alignment, on
a scale greater than that of a wavelength, is noisier in ¢si/ mutants
than in wild-type roots. A similar reduction in the uniformity of
microfibril alignment across the root has been reported for
treatment with low concentrations of the microtubule inhibitor
oryzalin (27). The decrease in cellulose organization in c¢si/ mu-
tants indicates that CSI1 may participate in the mechanisms re-
sponsible for organizing the deployment of cellulose microfibrils
in primary walls.

CSI1 belongs to a family of highly conserved land plant-spe-
cific proteins. CSI1 contains multiple predicted ARM repeats
and a single C2 domain. Three-dimensional structures of pre-
viously characterized ARM repeats comprise three o helices. For
example, yeast importin-a contains a central region of 442 aa
that contains 10 ARM repeats of 42 aa, forming a right-handed
superhelix of helices that creates a surface for protein—protein
interactions (18). By comparison, CSI1 has 10 predicted ARM
repeats distributed unevenly across the entire protein (2,151 aa).
We are not able to draw direct structural comparisons between
CSI1 and other proteins containing ARM repeats.

Methods

Plant Materials and Growth Conditions. Arabidopsis thaliana Columbia
(Col-0) seeds were sterilized and germinated on Murashinge and Skoog
plates (1/2 x MS salts, 0.8% agar, 0.05% monohydrate 2-(N-Morpholino)
ethanesulfonic acid, pH 5.7). Seedlings were grown vertically on the agar at
22 °C in darkness for 3 d before imaging. For soil-grown plants, seedlings
were germinated on MS plates containing 1% sucrose and then were
transferred to pots in a greenhouse at 22 °C under 16-h light and 8-h dark.

Yeast Two-Hybrid Assay. The yeast two-hybrid screen was carried out by
Hybrigenics. CSI1 was identified as a CESA6-interactive protein. To confirm
the interaction between CSI1 and CESA6, we subcloned the prey fragment
into pACTIl (28). The catalytic domains of CESA1, CESA3, and CESA6 were
cloned into pAS1-CYH2 (28) using primers indicated in Table S2. The
resulting constructs were cotransformed into yeast strain Y190 as pairs
(Fig. 1B). Transformants were selected on SC-Trp-Leu-His plates. Positive
interactions were tested by their ability to grow on SC-Trp-Leu-His plates
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Polarized light analysis of csiT mutants. (A and B) Polarized-light micrographs of (A) wild-type and (B) csi7-1-mutant roots. Images are of longitudinal-

tangential sections through cortex and epidermis. Intensity is proportional to retardance, and color represents optical axis (azimuth) of the crystalline ele-
ments, as shown by the color wheel. Note the similar intensity and color for the two genotypes. (C) Quantification of retardance and azimuth (90° is
transverse to the root’s long axis). Top panels show means + SEM (n = 3 roots); bottom panels show the average SD (n ~ 200 measurements) + SEM for each of
the roots. Note the larger SDs for csi7-7 mutants in the elongation and mature zones.

supplemented with 100 mM 3-aminotriazole (Sigma) and for GUS activity
using a filter assay.

Coexpression Analysis. A coexpression network for CS/7 (Cluster 86) was
obtained from AraGenNet at http:/aranet.mpimp-golm.mpg.de/aranet/
AraGenNet (29) and trimmed to facilitate readability.

GUS Construct and Staining. A genomic DNA fragment (1.4 kb) upstream
from the ATG start codon of CS/7 was cloned into pCAMBIA1305 GUS-Plus
(Table S2) using BamHI and Ncol. The construct was transformed into Ara-
bidopsis using Agrobacterium-mediated transformation. Transgenic plants
were selected on hygromycin, stained for GUS activity in 100 mM sodium
phosphate (pH 7.0), 10 mM EDTA, 1 mM ferricyanide, 1 mM ferrocyanide,
and 1 mM 5-bromo-4-chloro-3-indolyl -D-glucuronic acid at 37 °C, cleared in
70% ethanol, and observed under a Leica MZ12.5 stereomicroscope (Leica
DFC420 digital camera).

Construction of Transgenic Lines. A 35S promoter in pH7WGR2 and pH7RWG2
(30) was replaced with a 3-kb promoter of CSI1 using Spe | and Sacl to create
construct pYG104 and pYG105, respectively. The full-length coding sequence
of CSI1 (accession # NM_12781.4) synthesized by DNA 2.0 was introduced
into pYG104 and pYG105 using Gateway LR Clonase Il (Invitrogen). The
verified constructs (pYG106 and pYG107) then were introduced into csi7-6
by Agrobacterium-mediated transformation. Complemented lines were se-
lected for further analysis.

Cellulose Measurement. Cellulose was measured from 4-d-old etiolated

seedlings using the Updegraff method (31). Data were collected from five
technical replicates for each tissue sample.
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Microscopy. Anthers from 5-wk-old plants or hypocotyls of 4-d-old dark-
grown seedlings were mounted on stubs under a pressure of 50 Pa in an
Hitachi TM-1000 scanning electron microscope. Roots of 8-d-old light-grown
seedlings were wet-mounted on slides and viewed and photographed with
a Leica DM5000B epifluorescence microscope (JH Technology). ImagelJ soft-
ware (W. Rasband, National Institute of Health, Bethesda, MD) was used for
measurement of hypocotyls and root length. Whole 5-d-old seedlings were
viewed on MS plates using a Leica MZ12.5 stereomicroscope (Leica DFC420
digital camera).

Polarized Light Analysis. Roots were prepared for polarized light analysis as
described previously (27). Briefly, root tips were cryofixed in liquid propane,
freeze-substituted in ethanol, embedded in butyl-methyl-methacrylate, and
sectioned at 2-pm thickness. Sections were imaged on an Interphako po-
larized-light microscope (Zeiss) equipped with an LC Polscope quantification
system (Cambridge Research Instruments) implementing the universal com-
pensator (26). This instrument operates in circularly polarized light and
generates two images. The intensity of each pixel is proportional to bi-
refringent retardance in the first image and to the azimuth of the optical
axis of the crystalline elements in the second image. For display (Fig. 5) the
two images are superimposed with pixel intensity giving retardance and
color giving azimuth. Measurements were taken from subcellular areas of
cell wall in cortex and epidermis, as viewed in longitudinal sections. Ap-
proximately 20 sections per root and three roots per genotype were mea-
sured. For analysis, the root was divided into meristem, elongation, and
mature zone based on cell length. Azimuth was defined with respect to the
local midline (longitudinal axis) of the root.

To assess the statistical significance of the polarized light observations,
circular statistical techniques were used (32). Specifically, microfibril orien-
tation was expressed as a unit vector corresponding to the doubled azimuth
angle; to obtain the mean orientation, this unit vector was averaged over
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each observation zone, and the result was halved. The angular deviation was
calculated as half the (nonnegative) angular distance between the unit
vectors for an individual patch, a, and the mean, b: arccos [cos (a — b)]. Zone-
wise mean angular deviations of microfibrils were compared between
genotypes using a Mann-Whitney U test, similar to the approach used to
compare sample angular deviations reported by Wallraff (32). The distri-
bution of zone mean angular deviations was skewed right, but the distri-
bution became approximately normal after log transformation. Therefore,
logarithms of mean angular deviations also were compared using an in-
dependent sample t test. The results of the t test on log-transformed data
and the u test were the same.

Isolation of T-DNA Insertion Line. The identification of c¢si7 knockout lines
from the SIGnAL (Salk Institute Genomic Analysis Laboratory; http://signal.
salk.edu/cgi-bin/tdnaexpress) collection was based on a combination of da-
tabase searches and PCR amplification of T-DNA flanking regions. For T-DNA
lines identified from the SIGnAL collection, seeds were obtained from the
Arabidopsis Biological Resource Center (Ohio State University; http:/www.
biosci.ohio-state.edu/~plantbio/Facilities/abrc/abrchome.htm). PCR reactions
were carried out to identify single plants for the T-DNA insertion. Primers
used for T-DNA genotyping of ¢si7 alleles are listed in Table S2.

Confocal Microscopy and Image Analysis. For analyses of microtubule dy-
namics, seeds were germinated on MS agar plates and grown vertically in
darkness for 3 d at 22 °C. Seedlings were mounted between two coverslips in
water. Imaging was performed on a Yokogawa CSUX1spinning disk system
featuring the DMI6000 Leica motorized microscope (13) and a Leica 100x/1.4
NA oil objective. YFP was excited at 488 nm, and a band-pass filter (520/50 nm)
was used for emission filtering. Image analysis was performed using Meta-
morph (Molecular Devices) and Imaris (Bitplane) software.

. Brown RM, Jr, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter
xylinum: Visualization of the site of synthesis and direct measurement of the in vivo
process. Proc Natl Acad Sci USA 73:4565-4569.

2. Mueller SC, Brown RM, Jr, Scott TK (1976) Cellulosic microfibrils: Nascent stages of

synthesis in a higher plant cell. Science 194:949-951.

3. Giddings TH, Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in
the plasma membrane of Micrasterias denticulata associated with the formation of
cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327-339.

4. Mueller SC, Brown RM, Jr (1980) Evidence for an intramembrane component
associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell
Biol 84:315-326.

. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:
53-78.

6. Persson S, et al. (2007) Genetic evidence for three unique components in primary cell-
wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:
15566-15571.

7. Desprez T, et al. (2007) Organization of cellulose synthase complexes involved in
primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:
15572-15577.

8. Fagard M, et al. (2000) PROCUSTE1 encodes a cellulose synthase required for normal
cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant
Cell 12:2409-2424.

9. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev? links
cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557-1566.

10. Arioli T, et al. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis.
Science 279:717-720.

11. Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are
required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529-2540.

12. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of
cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in
Arabidopsis Ixr1 mutants. Proc Nat/ Acad Sci USA 98:10079-10084.

13. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase
demonstrates functional association with microtubules. Science 312:1491-1495.

14. Nicol F, et al. (1998) A plasma membrane-bound putative endo-1,4-p-D-glucanase is
required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:
5563-5576.

15. Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes

required for cellulose synthesis by regression analysis of public microarray data sets.

Proc Natl Acad Sci USA 102:8633-8638.

w

Gu et al.

For Imaris analysis, the contrast was enhanced and normalized for each
slice within a movie using ImageJ. The enhanced movie was processed in
Imaris 6.2.1 from Bitplane. Automated particle detection was performed to
find particles with a diameter of ~230 nm, and tracks were generated over
the lifetime of the particle. To filter noise in particle detection, only particles
detected for 14 s (seven frames) were analyzed. The data for the total dis-
placement and duration for each track in a movie were exported. Directional
bias was analyzed by summing the vectors of all particles to determine the
direction of greatest particle flux. The dot product of each particle’s tra-
jectory against this direction was calculated, and the velocity of each particle
was plotted against its dot product. Greater differences between particle
velocities going with and against the major axis result in a larger slope in
a linear regression of this plot.

Database Search and Sequence Alignment. The predicted amino acid se-
quence of CSI1 (At2g22125) was retrieved from the Arabidopsis Information
Resource (TAIR) database (www.arabidopsis.org). This protein sequence
was used to identify full-length CSI1-like proteins in the National Center
for Biotechnology Information GenBank protein database using BLASTP
(www.ncbi.nlm.nih.gov/BLAST). CSI1-like proteins (Table S3) were aligned
using ClustalW implemented in MegAlign (DNASTAR); protein alignments
then were used to generate the phylogenetic tree of CSI1-like proteins
(MegAlign; DNASTAR).
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